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NOTATION

A The matrix in the linear vector iteration (Equation (1.1))

b Constant vector in the linear vector iteration

H Rectangular matrix, the columns of which are successive second

difference vector, h

H* Transpose of H

H+  Generalized inverse h

h Second difference vector

h0  Initial second difference vector of a sequence

I Identity matrix

J Jordan Canonical form for A

9I  (Unnamed) norm for vectors (see Equation (4.13))

2 2 Euclidean norm for vectors (see Equation (4.14))

to Chebyshev norm for vectors (see Equation (4.15))

m Dimension of vector space = number of equations

in iteration system Equation (1.1)

n Iteration index

R Residual vector (Equation (4.7))

r Rank of matrix H and of extrapolation process

T Triangular square route of H* H (Equation (4.19))

U Rectangular matrix the columns of which are successive
first difference vectors u.

O+' Generalized inverse of U

u First difference vector

First difference vector resulting from putting

extrapolated vector back into iteration
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u 0  Initial first difference vector of a sequence

x Generic vector in m-space

x 0  
Initial vector in a sequence

xI  First output vector of iteration Equation (1.1)

x 2  Second output vector

XExtrapolated vector (see Equations (3.3) and (4.6))

x Exact solution vector (see Equations (2.7) and (3.2))

Tolerance to be met by norm of R

Eigenvalue of A

Auxiliary vector in Equations (3.3), (3.4), (4.6), (4.7)

FORTRAN PARAMETERS

ISK Number of iterations skipped over before beginning an
extrapolation cycle

M Same as m above

MFB Controls whether output of 7 of an extrapolation
cycle, for which tolerance is not met, is or is not
forced back as input to next iteration

MON Controls whether input to an iteration is only
the previous vector XOLD, or whether components
of the output vector XNEW are fed in as soon as
they have been generated

MXT Maximum allowed value of iteration counter NIT (to
prevent runaway computations)

N Assigned maximum number of columns of H, also
maximum allowed rank of extrapolation

NC Number of columns
of layers in rectangular grid of sample

NL Number oproblem

NR Number of rows

NIT Iteration counter

vi
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NSK Number of iterations skipped between end of one

extrapolation cycle and beginning of the next

TOL Same as C above

FORTRAN ARRAYS AND
DIMENSIONS

DIFI (M,N+l) Same as U

DIF2 (M,N) Same as H

HUTF (N,N+I) Holds (H*H,H+u0 ) and also the results of

triangularization thereof

RSID (M) Same as R

XHLD (M) Holds initial vector x0 through an
extrapolation cycle 0

XKSI (N) Same as

XNEW (M) Output of iteration, x n+

XOLD (M) Input of iteration, x
n

vi



ABSTRACT

A new family of methods, called reduced rank extrap-
olation, is developed for accelerating convergence of the
sequence of vectors generated during the iterative solution
of a system of m linear algebraic equations in m unknowns.
Large systems of this kind arise, for example, in the
finite difference or finite element solution of partial
differential equations.

Reduced rank extrapolation is derived from full rank
extrapolation, which is a straightforward generalization

to vector space of the well known Aitken A 2-Shanks el ,
scalar extrapolation. It is applicable when the iteration
has reached a point where only a few, say r, eigenvalues
dominate the situation and hence only r difference vectors
can be linearly independent to specified tolerance. The
rank, r, is determined during the solution of an auxiliary
problem of best approximation in vector space, i.e., "best"
in the sense of minimizing some specified vector norm.

Least squares theory, corresponding to the Euclidean norm,
is developed in detail herein.

Application to Laplace's equation in a square and in a
cube yielded reduction in computation time by a factor
ranging between 2.4 and 4.7, and reduction in iteration
count by a factor ranging between 3.6 and 5.4.

ADMINISTRATIVE INFORMATION

This research was carried out under the NAVSEA Mathematical Sciences

Research Program, Task Area SR0140301, Element 61153N, Work Unit 1808-010.

1. INTRODUCTION AND SUMMARY

This report presents a new family of methods, called reduced rank extrapolation,

for accelerating or producing convergence of the sequence of vectors generated in

the iterative solution, by whatever scheme, of a system of linear algebraic

equations in m variables

xn+I  A xn +b (1.1)

where x and b are m x 1 vectors and A is a (constant) m x m matrix. Large systems

of this type occur in the finite difference or finite element solution of partial

1
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differential equations of elliptic or parabolic type. These arise in many important

physical and engineering problems, such as those concerned with the flow of water

around ship hulls, the flow of air around aircraft and missiles, and the flux of

neutrons in a nuclear reactor. Standard methods of setting up the iteration matrix

A in terms of the original background equations are the subject of such well known

textbooks as those of Varga (1962), * Wachspress (1966), 2 Young (1971),3 and

Forsythe and Moler (1967).4

The motivating idea behind the reduced rank methods can be developed as follows.

In the background is the well known formula for extrapolating to the limit of a

scalar sequence

= ( in+l-)/ n+ n I-l

= Xn_ 1 - (Xn-X n-1) 2/(Xn+l-2x n +xn-1) (1.2)

due to Aitken (1926)5 and to Shanks (1949), 6 (1955).7 One derivation of this formula

can be generalized in a straightforward manner to apply to vector sequences. The

result, Equation (3.2), is here called full rank extrapolation; it seems to be

known, but not "well known." (The treatment in Section 3 is taken from the present

author's working notes dated 1952.) Full rank extrapolation can be helpful in the

iterative solution of small, mildly nonlinear systems. However, it is of no use for

.rge linear systems because it requires the inversion of an m x m matrix of second

difference vectors. This matrix has the same size as the original system and is

very likely to be much more ill conditioned.

This situation invites exploration of how much can be accomplished with only a

few difference vectors--say r of them, where 1 - r << m. (This is the origin of the

term "reduced rank extrapolation".) The outlook is hopeful when one recalls that,

as the iteration of Equation (1.1) proceeds, the successive x become expressible,n
to a given tolerance, in terms of fewer and fewer eigenvectors of A--i.e., those

associated with the eigenvalues of greatest magnitude. Under these conditions, only

a corresponding number of first difference vectors or second difference vectors can

*A complete listing of references is given on page 45.

2



be linearly independent--again to specified tolerance. It is not known in advance

just how many such vectors will be needed; the number is a function of the tolerance

imposed and is determined in the course of computation.

The theory of reduced rank extrapolation, as developed in Section 4, is both

simple and elegant. It differs from most other methods of accelerating vector

sequences in two respects: (1) vectors themselves, not their individual components,

are regarded as the basic entities, (2) only "observables," i.e., readily computable

quantities such as iteration vectors, difference vectors, and vector norms appear

in the final version of the theory. Although eigenvalues lurk in the background,

there is no question of estimating them and there are no difficulties associated

with close, repeated, or degenerate eigenvalues.

Reduced rank extrapolation can be described as follows: let x0 be some

selected vector in the sequence generated by the basic iteration of Equation (1.1),

let u0 = xI - x0, and let Z be the result of rank r extrapolation. Then - x0 is

expressed as a linear combination of r successive first differences u0 , ul, ...

Ur-l, the coefficients being those by which (-u0 ) is "best" represented in terms of

r successive second difference vectors h0 , h1 , ... h r I. The three interpretations

of "best approximation" in terms of the standard vector norms k., Z2' and £,

combined with the several computational schemes available for optimization under

each of these norms and the flexibility in r, give rise to the family of extrapo-

lation methods announced in the title.

There are two types of limitations on the use of reduced rank extrapolation.

The first is inescapable: (I-A) must be nonsingular so that none of the eigen-

values of A can be +1. In fact, if any one of them is too close to +1, the

extrapolated vector may be seriously in error. This comment is made precise by the

error bound, Equation (4.12). The second limitation has to do with available

computer storage capacity for the arrays of first and second difference vectors

required. This matter will be taken up in Section 5.

2. PRELIMINARIES ON DIFFERENCES AND ERRORS

From the vector iteration Equation (1.1) it is trivial to show that the

successive m-component first difference vectors

un xn+1 -x n  (2.1)

i ' 3



satisfy

u A u u 0  (2.2)n Un-i .. 0

The second difference vectors are given by

hn = Un+l - un = (A-I) u (2.3)

A central role in the theory to be developed here is played by the following

m x r (l-r-m) rectangular matrices whose columns are first or second difference

vectors, as indicated:

U = (u 0 ,ul,...Ur-l) (2.4)

H = (h0,hI .... h r_) (2.5)

It follows from Equation (2.3) that

H - (A-I) U (2.6)

This relation plays a key role in the theory.

Error vectors behave much like difference vectors. Let x be the exact solution

= A + b (2.7)

Then it is trivial to show that

xn - x - A(x -x) = ... = 0-(2.8)

There is actually an intimate relationship between a difference vector and the

corresponding error vector:

4
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F ... . . ....... .

u n  Xn+ 1  xn - A xn + b - xn (A-I) x n  (A-I) x

= (A-I) (xn-X) (2.9)

analogous to the relation in Equation (2.3) between second and first order

difference vectors.

3. FULL RANK EXTRAPOLATION

Let {x n be the sequence of vectors generated by Equation (1.1). Then

formally

xn - 0 + (x1-x0 ) + (x 2 -x 1 ) + ... + (xn-XnI)

x + u + u + ... + u
0 0 1 -

-0 + (I+A+A2 +...+A n-i) u0

= x0 + (I-A)-I (I-An) u0

If all eigenvalues of A are less than unity in absolute value, then lim An = 0, and

the vector sequence converges to the solution: 
n-*

lim xn = x x 0 +(I-A) u 0  (3.1)

Actually it is trivial to prove, by substitution into Equation (2.7), that the

second equality here is an identity; it holds regardless of convergence provided

only that the indicated inverse exists, i.e., that no eigenvalue of A can be +1.

If the matrices U and H are both m x m, and if H is nonsingular, then from

Equation (2.6) it follows that (I-A) - U H and Equation (3.1) becomes

= x0 -U H- u0  (3.2)

5
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which can also be written as the pair of equations

x = x0 + U (3.3)

0 = u0 + H (3.4)

In either of these forms this vector extrapolation formula constitutes the full

rank generalization to m-dimensional vector space of the well known Aitken A -Shanks

eI formula, Equation (1.2), for extrapolating scalar sequences: both Equations (3.2)

and (1.2) are derived by essentially identical chains of reasoning and Equation (3.2)

reduces to Equation (1.2) for m = 1.

Although theoretically Equation (3.2) yields the exact limit, x, it is not

really useful for solving linear systems because it requires solving a linear system

of the same order as the original. However, it can be useful in the iterative

solution of mildly nonlinear systems and it does provide a pattern for the more

useful reduced rank extrapolation.

4. REDUCED RANK EXTRAPOLATION DEFINITION AND JUSTIFICATION

As originally conceived, the term "reduced rank extrapolation" was intended to

convey the idea that the rank of the matrices U and H appearing in the extrapolation

formulas of Equations (3.2), (3.3), and (3.4) is not m, the dimension of the

vector space, but rather some smaller integer r:l - r < m. In other words, only r

successive first difference vectors u0, u1 , ... ur-l, or second difference vectors

ho, hl, ... hr-l, are linearly independent, at least to the accuracy carried in

computation. This situation obtains when the iteration of Equation (1.1) has

progressed sufficiently far that contributions associated with the m-r eigenvalues

smallest in magnitude are no longer significant.

The proof of this last statement involves the reduction of the iteration

matrix A to classical (Jordan) canonical form J by means of a similarity

transformation

A W - W J (4.1)

6



The columns of W are the eigenvectors (or principal vectors) of A, and J is a

diagonal matrix of eigenvalues (perhaps with Jordan boxes) arranged in order of

decreasing magnitude. The eigenvalues must all satisfy

< 1 (4.2)

if the original iteration process is to converge at all. From Equation (4.1) it

follows that

An W = W Jn (4.3)

According to the preceding discussion, if n is large enough, then all elements in
n

some lower right quadrant of J will be smaller in magnitude than any preassigned

threshold value. Correspondingly, all main diagonal elements of the r x r upper

left quadrant will have magnitudes above the threshold and will be considered

significant. Now let u0 be expressed as a linear combination of the eigenvectors of

A:

u 0 = W YO (4.4)

The corresponding expression for un is obtained by using Equations (2.2) and (4.3):

un  An u 0  An W YO =W Jn Y=WYffi u = = Y WYn(4.5)

As a result of the properties of Jn already described, only the first r components

of Yn will be of significant magnitude; thus, un lies in a subspace of dimension r

and only r consecutive u's can be linearly independent. Actually, this is an

idealized situation; practically, the distinction between rank r and rank r + 1 may

be very fuzzy indeed. Ways of dealing with this troublesome matter will be

discussed later in this report.

7
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BASIC EQUATIONS

In the full rank extrapolation discussed in Section 3, it was shown that the

difference between the exact solution, x, and some initial vector, x0, is a linear

combination of the m columns of U. These, being linearly independent by hypothesis,

span the whole to-dimensional vector space. This simple property of full rank

extrapolation is carried over as closely as possible to reduced rank extrapolation:
the difference between the extrapolated vector, 2, and the initial vector, xo, is a

linear combination of the r columns of U which, by assumption, are linearly inde-

pendent. Thus, Equation (3.3) is retained

Sx0 + U (4.6)

with the change that the vector now has only r components (l-r-m), and the left

side is merely an extrapolated vector, 1, not the exact solution, x. However, the

companion Equation (3.4) is no longer available, as it stands, for the determination

of & because (I-A)- I can no longer be completely determined from H = (A-I) U as it

was in full rank extrapolation. Instead, a new vector,

R = u0 + H (4.7)

called the residual vector, is introduced, and is chosen to minimize some norm

of R. Before the latter point is elaborated, it will be shown that R has a

natural and important interpretation as the first difference, _U, obtained by

substituting the extrapolated vector, 3r, back into the basic iteration of Equation
(1.1) :

R = u0 + H (Ax0+b-x0 ) + (A-I) U

= (A-I) (x0+Ut) + b - (A+b) - 7 - Z (4.8)

Furthermore, R is intimately related to the error, x - x, of the extrapolated vector,

just as u0 is related to the initial error, x- x. As for the latter, merely

8



rearranging Equation (3.1) gives

U = (A-I) (x0-X) (4.9)

Then it follows easily that

R u0 + H = (A-I) (x 0-x) + (A-I) U

= (A-I) (xo-X+X-x

= (A-I) (-x) (4.10)

Both of these equations correspond to Equation (2.9).

VECTOR NORMS AND THE DETERMINATION OF

AND r

Under the conditions assumed in this section it is no longer possible to make

the residual vector, R, vanish as it did in the full rank case. The best that can

be done is to make it as "small" as possible by choosing the vector so as to

minimize some norm of R and make this value less than some prespecified tolerance:

I I= mi - E (4.11)

There are three standard vector norms, ki, £2' and Z., which can be used to

measure the magnitude of a vector. Corresponding to each of these vector norms

is a matrix norm which is "consistent" with it. This property of consistency, when,

applied to Equation (4.10), asserts that

These norms, applied to a vector R with components R (1- i-n) and to a matrix

M = (A-I) 1 with components Mij, are:

9



m

mi~l

m

m 2

X2 I R1 12 = R*R= Y'IRl2

i=l

11M,12 = X largest eigenvalue of M*M (4.14)

i

mJI11. -max ,l IM iji ( 4.15)
j =1

Among these norms, t2 (better known as the Euclidean norm) is by far the best

known and widely used. Optimization using it is the method of least squares

introduced by Legendre and by Gauss around 1800. The vector E is determined by

solving a system of linear equations of order r, called the normal equation.

The next best known norm is the Z norm. Optimization using it is known as

Chebyshev or minimax approximation. The vector & is determined as the solution of

a linear programming problem.

The least well known of these norms is the tI norm, which seems to have no

other name. Optimization using it is sometimes referred to as the method of least

absolute deviations. The vector is determined as the solution of a linear

programming problem in this case also.

10



Thus far the three vector norms tl, Z 2' and Z have been treated on an equal

footing. Actually, all of the author's computational experimentation has been with

the 2 norm, simply because it was more familiar and hence easier to adapt to

present needs. Similar adaptation of linear programming methods encountered in

optimization under 9l and 9. norms should be carried out. For a sample of fairly

recent work in Z1 and Z optimization, see the several papers by Barrodale

et al.
8- 1 0 and by Bartels et al.

11 - 14

COMPUTATIONAL TACTICS

Determination of the rank, r, of the system

R - u 0 + H (4.7)

I RI = mi < (4.11)

is a key step in the solution of the extrapolation problem. Considerable compu-

tational experimentation has convinced the author that the best approach is to be-

gin by letting the basic iteration, Equation (1.1), run ("initial skip") until

contributions associated with smaller eigenvalues have been suppressed as described

earlier under "Definition and Justification." At this stage the effective rank of

H will be some not-too-large integer. Then begin a "build up" cycle, i.e., carry

out a step by step procedure in which the output of each new iteration of Equation

(1.1) is used to build a new column of each of the difference matrices U and H.

As each new column is added, the vector E is determined so as to minimize whatever

norm of R is being used. If the resulting minimized norm is less than some

preassigned tolerance, C, then the solution is at hand and the extrapolated solution

vector is obtained from

ff= x0 + U (4.6)

using the current x0, U, and 6. The number of columns of U and of H is r, the rank

of the system. If the tolerance is not met, the iteration cycle is repeated until

the number of columns reaches some maximum number, N, determined in advance by

11



availability of storage for U and H. Then a new build-up cycle can be started

either immediately or after skipping through some preassigned number (NSK) of basic

iterations of Equation (1.1).

It is a matter of tactical doctrine whether or not to feed back, as a new

starting vector, an extrapolated vector 3 for which the tolerance on the norm of R

has not been met. Computational evidence, which appears in Section 5, suggests

that this is a minor question, provided that a sufficiently large maximum rank is

allowed for (N>2) and that the initial skip is sufficient for the effective rank of

H to have become - N as required by hypothesis. The very worst performance arises

from forced feedback of rank one extrapolation right from the beginning (N=I, ISK=O).

From the foregoing discussion it should be clear that what has been called the

rank of the system (number of columns of U and H, number of components of ) depends

not only on the course of the basic iteraLion of Equation (1.1), i.e., how rapidly

it converges, but also on the tolerance c ,' ..b is imposed. An analogous situation,

wherein the solution of a small system of linear equations depends strongly on the

tolerance imposed on the residuals, was discussed by Peters and Wilkinson (1970),15

(especially, pages 314-315).

LEAST SQUARES OPTIMIZATION STANDARD THEORY
PLUS MODIFICATIONS

The rest of this section will be devoted to t2 optimization, the well known

method of least squares. The vector C in the optimization problem given by

Equations (4.7), (4.11) is found as the solution of the so-called normal equations

H* u0 + H*H = 0 (4.16)

and is given by

fi - H u0  (4.17)

where

H+ - (H*H)-1 H* (4.18)

12



is the well known Moore-Penrose generalized inverse of H. (General references:

Ben-Israel and Greville (1974),16 Boullion and Odell (1971), 17 and Lawson and

Hanson (1974).18

In view of the tentative step-by-step procedure advocated in the preceding

section, one might be inclined to use a step-by-step expansion of H+ using

partitioned matrices as was so carefully discussed by Greville (1960). 19 However,

from the standpoint of programming the solution on a computer, it is much simpler

and more elegant to use what may be called the expanding Choleski method. This

method involves the triangular square root, T, of the symmetric positive definite

matrix H*H. From

T*T = H*H (4.19)

it follows that

Tn . /(HH) 11

Tij = (H*H)I j /TI )
Tij (H*H) ij - Thi Th ii (i<j)

h=l

Ti =N/H*H)il h

The process of constructing T produces from Equation (4.16) the triangular system

T + T*-I H* U= 0 (4.21)

which is easily solved for .

13



The expanding nature of the computation carries over very neatly into the

coding as follows: as each new vector (beyond xoxlx 2) is produced by the basic

iteration, a new column is added to the difference matrices U and H. Corresponding-

ly, a new row and a new column are added to H*H and a new element (new row) is

added to H* u The lower triangular matrix T gains a new column and the vector

T H* u0 in Equation (4.21) gains one more element. Once any element of the array

holding the system of Equation (4.16) has been used in computation, it is never

needed again; hence the same array can be overlayed by the system of Equation

(4.21). The expansion process may have to be halted prematurely if some (Tii)
2

becomes either too small in relation to overall accuracy of computation or actually

negative. In such a case it is best to just abort the current extrapolation cycle

and return control to the executive routine.

Geometric Sidelights
Use of the k2 norm leads to especially simple relations between the residual

vector R = ', Equation (4.7), and u0 and also between the errors of the extrapolated

vector and of the initial vector xO . Substituting Equation (4.17) into Equation

(4.8) gives

R = u - u 0 + H E = (I-HH+ ) u0  (4.22)

The quantity (I-HH + ) is called an orthogonal projector: it eliminates any

components of u0 which lie in the subspace spanned by the columns of H.

Similarly, Equations (4.9) and (4.10) with Equation (4.22) yield

S- x = (A-I)- I= (A-I) (I-HH + ) (A-I) (xo-x)

- (I-UU+ ) (xox) (4.23)

The last step involves the basic relation

H = (A-I) U (2.6)

14



20
plus a theorem of Greville (1966) which justifies assuming that

1+ = UO (A-I)-1 (4.24)

Here again, in Equation (4.23), is an orthogonal projector which eliminates any

components of the initial error vector - x which lie in the subspace spanned by

the columns of U.

Obviously, these projectors are related by a similarity transformation:

I- HH+ + (A-I) (I-UU+ ) (A-I) - l (4.25)

Special Cases: N = 1 and 2

The simplest possible cases of the foregoing theory occur at the start of an

extrapolation cycle when the vector difference matrices U and H have only one or two

columns (N=l or 2). Explicit solutions are easily given, at least for the Z 2 norm:

+

N I h*uo/hoh (scalar) (4.26)
0 0 0 0

X= x0 + u0 = (i- ) x0 + xI  (4.27)

Thus the rank one extrapolation is merely the well known relaxation process with a

ready-made value of the relaxation parameter. Corresponding expressions for N - 2

are

C (-) x0 + ( ) xl + 2 x2 (4.28)

where

(hth I ) (h~u0 ) - (hlh0) (hlu0 )

& - (hh 1 ) (h~ho) - (h~hO ) (h~h1 )

(4.29)

-(h~h 1 ) (hu ) + (hh O) (hu O)

2 - (hthl) (h~ho) - (hho) (hh

15
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As might be expected, these simplest cases have already appeared in the
21

literature. For example, Jennings (1971) gave the equivalent of Equation (4.26)

and called it SDM (second difference modulation). He also discussed what he called

"double acceleration" which appears to be closely related to the N = 2 case of the

present report, as did Hadjidimos (1978).22

Earlier Version: Singular Value
Decomposition

For the sake of completeness, it is desirable to describe briefly an earlier

version of reduced rank extrapolation which has already appeared in the literature
23

(Eddy (1979)) and to explain why it has been discarded.

The original train of thought, as described at the beginning of Section 4,

led to attempts to determine "the rank" of the matrix H of second difference vectors

and then to solve the normal Equations (4.16) having this dimension. The most

powerful tool for such rank determination and for solving the linear least squares

problem is the "singular value decomposition"

H = W D V* (4.30)

where D is a diagonal matrix of (nonnegative) eigenvalues of H*H and V and W are

orthogonal matrices. (General references: Ben-Israel and Greville (1974),l6
24

Stewart (1973)). The computational aspects of singular value decomposition were

perfected by Golub and various collaborators in a series of papers during the 1960's,

(e.g., Golub and Reinsch (1970))2 5 culminating in a state-of-the-art computer

program, CSVD, (in FORTRAN) for general complex matrices (Businger and Golub
26

(1969)). This program was adapted by the present author to the simpler case of

real arithmetic only (Computer Program RSVD) and used for computational experimenta-

tion as reported in Eddy (1979).23

The dismaying fact which emerged from monitoring printouts was that, at least

for the typical sample problem described in Section 5, there was no clear-cut break

between "large" and "small" singular values of H, analogous to assumptions explained

at the beginning of this section, and hence no clear-cut rank for H.

16
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Correspondingly, it became clear that linear independence of the vectors

encountered here is a rather "fuzzy" concept: the number of successive vectors

which can be considered to be linearly independent depends very much on the

tolerance imposed.

Another fact emerged serendipitously from the copious printouts, something

that had not even been conjectured previously, namely that

R= u (4.8)

Once conjectured, this equality was easily proved and became the cornerstone of the

revised approach described herein.

5. COMPUTATIONAL EXPERIMENTS

SAMPLE PROBLEM

The sample problem used to exercise the cco-outer program and to compare the

results of various tactical options therein is tne finite difference solution of

the Laplace equation, in both a square (two dimensions) and a cube (three

dimensions) with zero boundary conditions. Ten internal mesh points are taken in

each direction, and mesh point starting values are obtained from a pseudo-random

number generator. This generator is a function subroutine built into the CDC

FORTRAN compiler. It produces the same sequence of "random" numbers on each

problem run. This simple problem is intended to be sufficiently realistic but at

the same time to be easy to code.

COMPUTER PROGRAM

The computer program is intended to simulate some existing computer program for

vector iteration into which an extrapolation capability has been inserted. Further-

more, it is also intended that the program be easy to use for numerical experiments

so certain tactical options are made to depend upon the values of input parameters.

In shifting between two- and three-dimensional problems, it is necessary to

replace the ordinary iteration subroutine, to change most of the dimension state-

ments, and to change the format statement controlling the page heading for output

printouts.

17
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The program is organized into three modules for which listings are given in

the appendix:

(1) the executive routine, SIMP, which controls initial setup, controls

printouts for monitoring, calls the ordinary iteration subroutine, computes norms

of difference vector and tests for convergence, and calls the extrapolation

subroutine.

(2) the ordinary iteration subroutine, P2D or P3D, depending on whether a two-

or a three-dimensional problem is at hand. In either case the new value at a mesh

point is just the mean of the values at nearest neighbor points. This averaging is

under control of an input parameter, MON: for MON = 0 only old mesh values

(components of XOLD) are used in computing new values (gesamtschritt = total step =

point Jacobi iteration); for MON = 1 new mesh point values (components of XNEW) are

fed in as soon as they are available (einzelschritt = single step = Gauss-Seidel

iteration). No effort was made to optimize these subroutines in any sense.

(3) the extrapolation subroutine, XTRP, which builds up the difference matrices

DIFl (=U) and DIF2 (=H), stores the vector x0 at the beginning of a build-up cycle

in XHLD, builds up the normal equations and their triangularized version (both in

the array HUTF), calculates the residual vector RSID and its norms under kI' £2'

and £, tests whether a selected one of these norms meets the specified tolerance

TOL (=c), and, if so, computes the extrapolated vector i which then replaces the

least iteration output in XNEW. This is then fed back into the ordinary

iteration; since Z = R, the convergence test there is met and computation is stoppei.

There are several more input parameters:

M = dimension of original system of equations = number of components in

most vectors. For the present sample problem, M = NR x NC for 2D problems,

M = NR x NC x NL for 3D problems where

NR = number of rows

NC = number of columns

NL - number of layers

in the rectangular array of mesh points. All were equal to ten in the sample

problems.

N = maximum number of columns allowed for in DIF2 (=H) - maximum rank

extrapolation allowed for. This is also the maximum number of components in the

auxiliary vector XKSI and the maximum number of rows in the normal equation array

HUTF. Values of N from one to ten were tried.

18



MXT - Udxtmua a, . , . i. i i a safety

feature to prevent .

ISK - initiA SL ..: , ippvd through before an

extrapolation uk I id- ..

NSK =  :iumher ,t r :.i! rii t tweri tie end of one

extrapolation build-up ,',le jnd tt.t -, inntnj , ! t0e next.

MFB controls forced feedbacK into tt.- iteration cycle of an extrapolated
vector for which the convergence crttrion R - F has not been met.

(No feedback for MFB=O, forced feedback for MFB=l).

Dimensions of all arrays are specified in terms of the two parameters M and N.

Vectors XOLD, XNEW, XHLD, and RSID have dimension M. Vector XKSI has dimension N.

The two-dimensional arrays are DIF1 (M,N+l), DIF2 (M,N), and HUTF (N,N+l).

The amount of storage required for these arrays is

S = (5+2N) M + N (N+2) (5.1)

For M of the order of thousands or tens of thousands, as would be the case for a

realistic problem in partial differential equations, this amount of extra storage

becomes prohibitively large for present day computer systems, even for small values

of N. (N = 5 or 6 seems to be optimal for the prr-ent sample problem.)

SUMMARY OF RESULTS

Tables 1-3 show computation time in seconds on a CDC 6400 and iteration count

as functions of two parameters: N, the maximum rank extrapolation, and ISK, the

numbers of iterations skipped through before beginning the first extrapolation

cycle. No complete survey was attempted--only enough to locate the parameter

values which yielded minimum computation times.

Three closely related problems were treated: the finite difference equivalents

of Laplace's equation in

(1) 2 dimensions, 10 x 10 grid, 5-point pattern

(2) 2 dimensions, 10 x 10 grid, 9-point pattern

(3) 3 dimensions, 10 x 10 x 10 grid, 7-point pattern

For each of these problems there were four combinations of tactical options, not all

of which were investigated for each problem. They were

19



TABLE 1 - COMPUTATION TIMES AND ITERATION COUNTS 2D, 5-POINT PATTERN

TABLE 1A - MON=0, MFB=O

N
1 2 3 4 5 6 7 8 9 10

0 6.449 4.449 3.815 3.266 2.969 3.296 3.527 3.565 3.710 3.701

239 139 105 81 67 70 70 68 66 67

50 1.610

69

55 1.888 1.421 1.491

81 68 69

60 2.538 1.770 1.234 1.211 1.229

105 81 67 67* 67

65 1.640 1.298 1.306

81 72 72

70 1.508 1.382

81 77

75 1.383

81

20



TABLE 1 (Continued)

TABLE 1B - MON=O, MFB=I

N

ISK 1 2 3 4 5 6 7 8 9 10

0 14.008 6.469 4.721 4.077 3.628 3.237 3.377 3.532 3.412 3.210

476 188 122 95 78 66 63 62 57 51

25 2.291 1.931 1.852 1.653 1.584 1.387 1.434

70 59 59 49 47 43 43

30 10.647 2.947 2.903 1.995 1.619 1.487 1.287 1.377 1.337 1.506

378 102 93 66 55 51 46 47 46 48

35 1.801 1.421 1.199 1.226 1.313 1.376 1.372

65 54 49 49 50 51 51

40 11.922 2.211 1.915 1.608 1.213 1.158 1.192

426 86 74 64 53 52 52

45 1.476 1.165 1.188 1.216

64 56 56 56

50 7.645 1.577 1.748 1.445 1.144 1.271 1.340

285 74 76 66 59* 61 62

55 1.512 1.564 1.304 1.203 1.281

74 74 66 64 65

60 3.922 1.464 1.366 1.262 1.231 1.229

163 76 72 69 67 67

65 1.291 1.406 1.297

74 76 73

70 2.510 1.472 1.369

119 82 78
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TABLE 1 (Continued)

TABLE IC - MON=I, MFB=O

1 2 3 4 5 6 7 8 9 10

0 1.564 1.298 1.220 1.428 1.383 1.340 1.321 1.399 1.583 1.719

57 40 33 35 31 28 25 26 28 29

20 0.915 0.845 0.711 0.708

35 32 28 28

25 0.725 0.795 0.708 0.709

34 35 32 32

30 0.804 0.673 0.662 0.662

40 35 35* 35

35 1.176 0.689 0.683 0.692

58 39 39 39

40 1.099 0.765

57 44
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TABLE 1 (Continued)

TABLE ID - MON=l, MFB=1

N

ISK 1 2 3 4 5 6 7 8 9 10

0 4.052 2.033 1.931 2.021 1.895 1.983 2.224 2.144 2.113 2.010

138 58 49 47 41 40 41 37 36 32

5 2.980 1.739 1.634 1.841 1.534 1.675 1.659 1.913

103 53 45 46 36 38 35 38

10 2.043 1.451 1.296 1.374 1.128 1.256 1.069 1.073

73 48 39 39 32 32 27 27

15 2.357 1.116 1.005 0.867 0.838 0.783 0.722 0.799 0.805 0.780

87 40 35 30 28 27 25 25 25 25

20 1.673 0.929 0.666 0.677 0.655 0.707

66 38 29 29 28* 28

25 1.252 0.742 0.690 0.655 0.717 0.713

54 35 33 32 32 32

30 0.933 0.712 0.662 0.654 0.667 0.658

46 37 35 35 35 35

35 0.814 0.685 0.675

44 39 39

40 0.832 0.757

47 44
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TABLE 1 (Continued)

TABLE 1E - SUMMARY FOR 2D, 5-POINT PATTERN

OPTIMAL VALUES OF PARAMETERS

Free Run Extrapolation

Iteration No Forced Forced

Input Feedback Feedback

Vector MFB=O MFB=l

XOLD ONLY Time = 4.803 Min Time = 1.211 Min Time = 1.144

NIT = 319 NIT = 67 NIT = 59

MON=0 ISK = 60 ISK = 50

N =6 N 5

Time Gain = 3.97 Time Gain = 4.20

NIT Gain = 4.76 NIT Gain 5.41

XOLD/XNEW Time = 1.943 Min Time i 0.662 Min Time 0.655

(as available) NIT = 128 NIT f 35 NIT 28

MON-1 ISK= 30 ISK= 20

Nf4 N=5

Time Gain = 2.94 Time Gain = 2.97

NIT Gain = 3.66 NIT Gain 4.57

24
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TABLE 2 - COMPUTATION TIMES AND ITERATION COUNTS 2D, 9-POINT PATTERN

TABLE 2A - MON=0, MFB=O

1 2 3 4 5 6 7 8 9 10

0 2.718 2.047 2.056 1.988 2.088

73 46 41 36 36

20 2.408 1.601 1.514 1.364 1.526

73 45 41 36 38

30 2.259 1.422 1.175 1.080 1.071
1 73 46 _39 36 36*1

40 2.098 1.263 1.191 1.190

73 47 45 45

50 1.951

73

25



TABLE 2 (Continued)

TABLE 2B - MON=O, MFB=I

1 2 3 4 5 6 7 8 9 10

0 14.126 5.926 4.126 3.403 3.729 2.805 2.866

252 105 70 5 49 39 37

10 12.499 4.627 3.180 2.512 2.437 1.949 1.446

230 88 60 47 44 34 26

15 1.613

34

20 8.278 2.771 1.568 1.239 1.183 1.298 1.240

160 61 39 33 31 32 30

25 6.515 1.545 1.090 1.198 1.167 |_

131 42 34 35 34

30 4.357 1.102 1.095 1.064 1.067 1.060 1.074

96 37 37 36* 36 36 36

35 2.427 1.144 1.103 1.096 1.094

64 41 40 40 40

40 1.510 1.159 1.197 1.206 1.192 1.195 1.184

51 45 45 45 45 45 45

45

50 1.388 1.337 1.337 1.332 1.331 1.329 1.335

55 54 54 54 54 54 54
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TABLE 2 (Continued)

TABLE 2C - MON=I, MFB=O

1 2 3 4 5 6 7 8 9 10

0 1.526 1.295 1.316 1.413
39 28 25 25

10 1.383 1.158 1.156 1.104
39 29 27 25

15 1.342 1.006 1.055 0.946
40 28 28 25

20 1.227 0.977 0.790 0.813

39 30 25* 25

25 1.190 0.839 0.828 0.836

40 29 29 29

30 1.075 0.939 0.940 0.946

39 34 34 34

35

40 1.077 1.104

43 43
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TABLE 2 (Continued)

TABLE 2D - SUMMARY FOR 2D, 9-POINT PATTERN

OPTIMAL VALUES OF PARAMETERS

Free Run Extrapolation

Iteration No Forced Forced

Input Feedback Feedback

Vector MFB=O MFB-l

XOLD ONLY Time = 3.393 Min Time = 1.071 Min Time - 1.064

NIT = 165 NIT = 36 NIT - 36

MON=O ISK = 30 ISK i 30

N=5 N=4

Time Gain = 3.17 Time Gain 3.19

NIT Gain = 4.58 NIT Gain 4.58

XOLD/XNEW Time = 1.899 Min Time 0.790

(as available) NIT = 90 NIT 25

MON=1 ISK = 20 (Not Done)

N= 3

Time Gain = 2.41

NIT Gain = 3.60
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TABLE 3 - COMPUTATION TIMES AND ITERATION COUNTS 3D, 7-POINT PATTERN

TABLE 3A - MON=O, MFB=I

1 2 3 4 5 6 7 8 9 10

0 52.340 44.368 40.207 38.889 38.763 36.694 37.737

129 100 84 76 71 63 60

40 20.163 17.370 17.506 18.201

67 61 59 60

50 22.804 18.206 15.399 15.867 15.956 16.116

86 70 64* 65 65 66

60 16.302 15.957 16.763 17.399 17.406

73 72 73 74 74

100 20.331 120.057 _20.051

109 107 107
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TABLE 3 (Continued)

TABLE 3B - MON=I, MFB=0

N

IS K 1 2 3 4 5 6 7 8 9 10

0 17.213 16.845 16.771 17.651

79 55 45 41 37 36

25 12.192 10.259

43 38

30 9.856 8.391 8.448

41 37* 37

35 9.605 8.660 8.643 8.635

44 41 41 41

40 8.940 8.932

45 45

45 9.832

50

30
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TABLE 3 (Continued)

TABLE 3C - SUMMARY FOR 3D, 7-POINT PATTERN
OPTIMAL VALUES OF PARAMETERS

Free Run Extrapolation

Iteration No Forced Forced

Input Feedback Feedback

Vector MFB=O MEF=l

XOLD ONLY Time = 50.092 Min Time = 15.399

NIT = 297 NIT =64

MON=O (Not Done) ISK = 50

N= 7

Time Gain =3.25

NIT Gain =4.64

XOLD/XNEW Time = 23.621 Min Time = 8.391

(as available) NIT = 134 NIT =37

MON=1 ISK =30 (Not Done)

N= 5

Time Gain =2.82

NIT Gain 3.62

31



MFB = 0 or 1: extrapolated vector, for which convergence criterion was not

met, was not/was fed back as input into next iteration cycle

MON = 0 or 1: input to iteration is output of previous cycle/components of

new output vector are fed in as generated.

For each combination of tactical options there is one table; for each problem there

are up to four such tables plus a summary table showing the minimum computation

time and corresponding iteration count as well as the gains achieved in comparison

with free runs in which no extrapolation was attempted. (Time gain, for example,

is the ratio of free run time to least time attained using extrapolation.)

In all cases the components of the starting vector were (the same sequence of)
< <

pseudorandom numbers in the range -0.01 - x - +0.01 and the criterion for con-

vergence was based on E = TOL = 10- .

For the problems considered, the optimum value of N lay in the range 3 < N < 7,

with N = 5 a good compromise. The procedure for determining this optimum N is to

make a series of runs N 1 1, 2, 3, ..., all with ISK = 0. That value of N for

which computation time is either a minimum or nearly down to an asymptotic value

is either the desired N or adjacent to it. The number of iterations corresponding

to this N, for ISK = 0, is somewhat above the value of ISK which yields minimum

time, but it gives a starting point from which to search for the optimal value.

The best value of ISK is one that requires only one or two extrapolation cycles to

obtain convergence, because the extra computation involved in extrapolation is

relatively costly of time.

One interesting sidelight on tactical doctrine appears: when the optimal

values of N and ISK are used, it makes relatively little difference whether MFB = I

or 0, i.e., whether an extrapolated vector _Z, for which the convergence criterion

has not been met, is or is not fed back as input to the next iteration.

By contrast, it stands out starkly that the very worst tactic is to force back

rank one extrapolation (N-1) right from the start (ISK=O). This is easy to under-

stand: the conditions under which rank one extrapolation is effective have not

nearly been reached so that what actually takes place is merely a succession of

restarts.
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6. OTHER WORK ON EXTRAPOLATION OF VECTOR SEQUENCES

The best known and most influential work on the extrapolation of vector
27

sequences is the vector epsilon algorithm of Peter Wynn (1962). It was put forth

as a generalization, by reinterpretation of his elegant scalar epsilon algorithm
28

which he had proposed (Wynn (1956)) as a practical means of computing Shanks'
7

transforms (Shanks (1955)). Roughly speaking, if the zeroth column of the vector

epsilon array contains the successive vectors from the iterative solution of a

system of m linear equations, then each element of the 2mth column is the solution

vector. The exact theorem, taking into consideration the nature of the minimal

polynomial of the iteration matrix, was discovered by Brezinski in 1972 (see
29 30

Brezinski and Rieu (1974)) and by Gekeler (1972). For a summary of results in

this general area, see Brezinski's lecture notes (Brezinski (1977)).31 His FORTRAN

implementation of the vector epsilon algorithm, EPSV, plus discussion and worked

examples, appears in his textbook on algorithms for accelerating convergence,

Brezinski (1978). 32

Unfortunately, the availability of this very useful product of mathematicians

seems to be too little known to engineers. Acceleration of convergence could

result in appreciable savings in the cost of their design calculations. Brezinski's

text 3 2 is intended to help spread the word; so far it is available only in French.

Just as in the 1950's, when the needs of the nuclear energy industry provided

impetus for developing the so-called relaxation methods for the iterative solution

of large systems of linear equations, so in the 1970's the needs of the aerospace

industry, particularly in solving problems in transonic flow, spurred several

attempts to devise methods for accelerating convergence in the iterative solution

of large linear systems.
33 34

In one series of papers, Martin and Lomax (1975), and Martin (1975) and
35

(1976), of NASA Ames Laboratory, the authors presented an ingenious method

involving attaching to a power series the finite difference solutions of certain

subsidiary problems arising from a perturbation analysis of the original partial

differential equations. (The motivation was their understanding that Shanks had

shown that a power series (even the first few terms!) tends to behave like a

geometric series and hence can be summed by what they refer to as the "Aitken/

Shanks transform," (Equation (1.2) of this report. Thus they were led to

33



mesh-pointwise extrapolation of the first three perturbation functions as a

means of accelerating convergence. For elaboration of these comments, see

Eddy (1976).36 Gains in computation time by a factor somewhat less than two

are reported.

In another series of papers, Hafez and Cheng (1975),3 7 (1976),38 (1977) 3 9 of

the University of Southern California at Los Angeles present the application to

certain aerodynamic problems of their modification of Shanks' transforms (or

equivalently, of Wynn's vector epsilon algorithm). Their first order transform

handles the situation wherein the matrix of the linear approximation to the

iteration equation has a single dominant eigenvalue, the second order transform

copes with two dominant eigenvalues, and so on. They achieve a considerable

reduction in required storage space by virtue of their theorem that, if the

initial sequence of vectors is generated by a linear recursion, then so also is

every even-ordered column of the corresponding vector epsilon array. They claim a

reduction in computation time by a factor ranging from three to five.

Many papers have been written, by many authors, on the choice of the relaxation

parameter, w, in

x (l-) xn + W Xn+l (6.1)

As has already been pointed out in Section 4, rank one extrapolation of the present

paper gives a particular way of calculating this parameter (Equations (4.26),

(4.27)). Detailed comparisons of the relative effectiveness of this and other

prescriptions have not been made and are not planned. Rank one extrapolation is

relatively ineffective when compared to higher rank extrapolation, and much more

interest attaches to possible relationships between rank r extrapolation for r > 2

and (a) the successive even-numbered columns of Wynn's vector epsilon array, or

(b) the higher order transforms of Hafez and Cheng. These questions remain to be

investigated. As has already been mentioned, something close to rank two

extrapolation has been presented by Jennings (1971)
2 1 and by Hadjidimos (1978). 22
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After the manuscript of this report had been completed, (except for the

remainder of this section), Claude Brezinski pointed out to the author that the

ideas described herein are close to those contained in papers by Cabay and Jackson
40 41 42 43

(1976), Mesina (1977), Smith and Ford (1980), and Skelboe. The main idea

of the so-called polynomial method of Cabay and Jackson 40 can he sketched as

follows, using the notation of the present paper:

Corresponding to the determination of the vector I (Equations (4.6), (4.7)) is

the determination of a pseudo minimal polynomial

pMt =  i pt g  (Ps+l 1, pM1 i0) (6.2)

j=0

such that

s+l

-p(A)u0 H Z 7P u (6.3)

i=O

Then the extrapolated vector is

S

x 0 + c u (b.4)

i=O

where

c i 4z= /p(1) (6.5)

In spite of differences in approach and in mathematical machinery employed, the

polynomial method and the reduced rank method are indeed quite parallel and share

the same computational pitfalls.
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*41Mesina's approach is even closer to that of the present report. His

extrapolated vector is again a linear combination of the iterated vectors

m

xm = 4'cj -x (6.6)

j =u

where the coefficients c are determined so as to minimize the k2 norm of

U = A Z + b - 3 (6.7)
m m m

m

= ' c. (u.-b) + b (6.8)

J-0

Here again the problem is to determine the rank, m, and the coefficients, c, which

are subject to

m

cj = 1 (6.9)
J-0

Mesina's convergence arguments lead to the same sort of polynomials that Cabay

and Jackson employed. Further, he points out that his method is valid when a few

eigenvalues of the iteration matrix, A, have absolute values greater than unity.

He has applied his method to a problem in neutron transport theory, where the

dimension of the system of equations is about 3000, and claims a reduction of

iterative count by a factor ranging from 3 to 5. This claim is quite comparable to

the claim of the present report.

Smith and Ford 4 2 combine the two foregoing methods into what they call the CJM

method and apply it to a sequence of vectors generated by a nonlinear iteration in

n space
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SF (xi) (6.10)i~l I

where F is Fr~chet differentiable. Their extrapolation formula is

where the c. are the least squares solution of the overdetermined system
1

k
cu = 0 (ckl) (6.12)

i=O

and

ui = xi+ 1 - xi  (6.13)

They go on to show that the vector outputs of a sequence of iterative cycles,

in which the output, 3 , of each cycle becomes the input, x0, of the next cycle,

behave exactly like the sequence of vectors produced in a similar fashion with the

aid of Wynn's vector epsilon algorithm; hence, according to a result proved inde-

pendently by Brezinski29 and by Gekeler, 30 the vectors of this sequence converge

quadratically in the k2 norm toward the solution of x = F(x).

Their paper concludes with comparisons of the performance of the CJM method

with the performance of the vector epsilon algorithm on a set of small test

problems.

According to Smith (private communication), Skelbue's "algorithm is very

similar to what we call CJM, and he proves a similar quadratic convergence result,

albeit by a much longer proof."

It does indeed appear, as Brezinski pointed out, that the last few algorithms

described above are essentially the same as the reduced rank algorithm presented

herein. Apparently the time is ripe for such a step forward in this area of

numerical analysis.
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APPENDIX

LISTING OF THE COMPUTER PROC'RAMS

SIMP: Control routine

P3D: Subroutine for iterative solution of Laplace's equation

XTRP: Subroutine for reduced rank extrapolation

These programs are written in CDC FORTRAN Extended which is essentially

FORTRAN IV.
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C LISTING FOR R P EDDY CODE 1643 6 APRIL 196

PROGRAN SINP(INPUTOUTPUTTAPESI NPUTTAPE:OUTPUT)
C NFO w 9 TO IGNORE UNSUCCESSFUL EXTRAPOLATION.
C NFB = I 10 FEEDBACK UNSUCCESSFUL EXTRAPOLATION.
C MON z I FCR TOTAL STEP ITERATION. INPUT IS XOLO ONLY.
C "ON = I FCR SINGLE STEP ITERATION. INPUT IS XOLf3/XNEW AS AVAILABLE.
C WIT" N = 0, THIS DECK IS SET UP FOR A FREE RUN--NO EXTRAPOLATION.

DINENSION XOLO(16003, XNEW1140019 RS1008) FOR P30
Me s 10
NC z 10
NL v 16 FOR P3O
H a NR*NC*NL FOR P30
NPPL - NR*NC FOR PSI)
TOL = G.IE-7
NXT 500
IS = 0
NSK S
N .0
NFa = 0
"ON •0

If WRITE(6,181)
1010 FORNATISSH1ACCELERATION OF CONVERGENCE BY REDUCEO RANK EXTRAPOLATI

ION)
11 WRIfE(6,1t1)

1011 FORMAT(TSIlLAPLACE EQUATION IN A PARALLELOPIPEO WITH 10 ROWS 11 COFOR P30
1LUNNS AND 1S LAYERS1 FOR P30

12 WRIE(69 1012)
1112 FORMAT 132H NOMOGENEOUS BOUNOARY CONOITIONS)

13 WRITE 169 1013)
113 FORHAT433H 7-POIbT PATTERN EQUAL WEIGHTS) r POINT

14 WRIIE1691lU1)
1014 FORMAT(80H COMPONENTS OF STARTING VECTOR ARE PSEUDO-RANDOO NUMBERS

1 -9.1L .LE. X .LE. #f.l)
C PARAMETER 00 LOOP CONTROLS GO HERE.

15 NRITE(691115) ISKNSKvNsNFBMON
11S FORAT(IIHOPARANITERSSX5SHISK m9ISISXHNSK uI3TX3HN U,1396XS

IHMF8 =,12,6X#SNNON =9121
C GENERATE RIGHT SIOE VECTOR, RS

26 00 21 1=1,N
21 RS1(11 z 0

C GENERATE STARTING VECTOR
C PSEUDORANDOM NUMBERS IN THE RANGE -*1 oLE. X *LEo O*ol

2s 00 26 I=IN
26 XOLOII z .S24RANF(I1 - a11

C BEGIN ORDINARY ITERATION CYCLE
NIT 3 1
NEX z ISK

35 CALL P3DINRNCNLoNPPLRSXOLOXNEWfONI FOR P0
C CALCULATE L1, L2, ANO LINF NORMS OF DIFFERENCE VECTOR

RI a 0.0
R2 2 0.0
R3 z 0.0

3S 00 37 IstIN
N 3 XNENII) - XOL0I!)
WA 2 ABSW-
R1 a RI# MA
R2 R2 o W
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37 IFIWA .GT. R31 3 E WA
RZ zSQRT(R2)

c TEST FOR CONVERGENCE

I

36 IFIRA - TOL R3i~1,50 Q
C CONVERGENCE ATTAINED

41 WRITE(6,1041) NIT
1041 FORHATIZSH CONVERGENCE ATTAINE0, NIT zIS~l

C
C WRITE OUTPUT VECTOR, ETC, HERE.
C

GO TO 99
SO IF(NIT - NEX) 70,70,60

60 CAL& XTRPtHNXOLOXNEW.TOLNSK,NEX,NIT,"FM I
To 00 ft 1z1,N
71 XOLDOIT = XNEWI)
80 NIT = NIT * 1

IFINIT - NXT) 36,3099S
95 WRITE(6,109S) NIT

1695 FORHAT(6HONIT w1S,29H .GT. NxT WITHOUT CONVERGENCE)
99 WRITE 16,10991

1899 FORMAT 49HOF INISHEO1
STOP
END
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C LISTING FCR a P ECOY CODE 181#3 S APRIL 1963

SUBROUTINE P3flgRNCP~q.NPPLRtSXOLOXNiEW."OWI
C 7 POINT PATTERN
C MN a0 FCR TOTAL STEP ITERATION. INPUT IS XOLO ONLY.

c ON a I FOR SINGLE STEP ITERATION. INPUT IS XOLO/XNEW AS AVAILABLE.
DIMENSION X0L0(11666), XNEW11000sI RS1100SI
I a
00 32 KC=ItNt
00 31 JCsINC
00O1 I C=,WR
I *
V a RS(II
IF(MON) 10,15

10 tIEC.NE. 11 W*W*XEVI-l)
IFIJC.NE* It WOWNNE"ItINRI
IFfKCeNE. It W*WfXNEWI-%PPLl
GO TO 20

15 !F(ICeNto t) WBV*XOLOhI-ll
IFCJC.NE. 11 WftNfX0LOII-NRl
IF(KCC.NE* 1) WOWOXOLOII-NPPLI

26 IP(IC.NENRl WNOXOLOII*1I
tF(JC.NEsNC) WiW'UOLDEI*NR)
IF(KC.NEet4LI WwW#XOL0EI#NPPL)

30 XNEWfI) =W/6.
31 CONTINUE
32 CONTINUE

RETURN
E NO
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C LISTING FCR R P EDDY CODE 184#3 S APRIL 190

SUBROUTINE XTRP41iMNXOLOXNEWTOL,NSK.NEXNITMFB1
C REDUCED RANK EXTRAPOLATION
C THIS VERSION IS FCR USE WITH L? AND SUCCESSIVE TRIANGULAR DECOMPOSITION
C ALSO CALLED EXPANCING CHOLESKI.
C MFB aU TO IGNORE UNSUCCESSFUL EXTRAPOLATION.
C "FB a I TO FEEDBACK UNSUCCESSFUL EXTRAPOLATION.
C

DIMENSION XOLflhlO0hI, XNENI1I6G0, XHLDI11UO6 FOR 030
DIMENSION DIF1II600#11J, DIF2110091OI FOR P30
DIMENSION XKSI(101, RSIO110S001 HUTF(109111 FOR P39

DATA NCCqNCY #f6,0.

C BUILD UP FIRST ANO SECOND ORDER DIFFERENCE MATRICES.
C
C CALCULATE THE NCC~1 COLUMN OF DIFI

16 DO 11 11M
It DIFI(INCC#11 = XNEN(II - XOLO(I

IF(NCCl 15,15,20
C SAVE INITIAL VECTOR

1S DO 16 1=19"
16 XHLD(II XOLO(I)

NCC N CC # 1
GO to 166

C CALCULATE THE NCC COLUMN OF 0172
23 DO 21 I=19,4
21 OIF2119NCC) DIFlIICCfI) - OIFI(INCC)

C
C CALCULATE THE NCC COLUMN OF H*N
20 DO 20'. ImINCC

DO 202 KIMN
262 W * W f OIF2IKvIl*01F2(x,NCC)
26'. MUTF(INCCI aN

C CALCULATE NCC ELEMENT OF HsU6
W a 0.6

00 266 K=1,M
286 W z W DIF2(KoNCCI*DIF1(Kg1I

HUTFINCCvN.1) a
C CALCULATE MCC COLUMN OF TRIANGULAR SQUARE ROOT

IF(NCC - 1) 216,210,212
216 HUTF1I,1I z SGRT(MUTF4I111

"UTFIIN.1) aHUTFI-mN,1I/HJTF(1,11
GO TO 230

212 HUTF(1,NCCl a MUTF(1,gCCI/HUTF(1,iI
DO 225 1=29NCC
IN a -I

N a HUTF(IWCCI
DO 21'. K1,qIM

214. N x W MUTFfK9I)*HUTF(KNCC)
1761 - CC$ 216,216,216

216 NUTPlINCCl x WNlUTF1I9tI
GO TO 225

216 IFINS 226,220,22.
220 NRITES,91a2@l NCYNCCNITW
1226 FORMAT ESHOTROUULE 9?X*SMNCY 2,13,5W,5HNCC z,13,'XNMNIT 2,19II.,XZ

IDIAGONAL ELEMENT aSQRTE13.61
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C EXTRAPOLATE WITH LAST USASLE XKS19 THAT FOR NCC-I
NCH a NCC - I

C SEE COMHENTS FOLLOWING LINE 72 BELOW.
IFfNFBI 75,80

221i HUTFtNCCNCCI z SORT(WI
Zs CONTINUE

C CALCULATE NCC ELEPENT OF RIGHT SIDE
I = HUTF(INCC*N,1)
00 226 Ka1,IM

226 W N HUTFiK*NCCI*HJTF(KN1Il
HUTF(NCCtN*1) a W/HUTFfNCC9NCC)

C CALCULATE XKSI THE VECTOR OF EXTRAPOLATION COEFFICIENTS
C ROW L HUTFfLLI*XKSI4LI # SUH(HUTFfLL*KI*XKSI(LOKI * HUTF(LNtID = 0
C I .LE. K .LE. NCC-L z I

236 XKSI(NCCv z -HUTF(NCCqN*II/NUTF(NCCqNCC)
00 234 11,IN
L z NCC - I
W = -HUTF(LoN#ll
00 232 KzlI

232 N sN - MUTF(L*LOKIOXKSrfLOKI
234 XKSIL z W/HUTFIL4L1

C
C CALCULATE RS1O, THE RESIDUAL VECTOR AND ITS HORNS UNOER L1,L2, LINF

46 Rl 0.9
R2 a 0.0
R3 = 0.0

45 00 45 Isl.e
W u OIFIII,1
00 46 JuINCC

1.6 W z N # OIFZ(IJI*XKSZIJI
WA a ABS INI
RI 2 RI * WA
RZ 2 R2 0 W*W
IFINA *GT. R31 R3 a WA

1.6 RSIO(II a W
R2 a SORTIR21

C TEST FOR CONVERGENCE
NCH = MCC

TO IF(R2 - TOLD TSv7,,l L2 TEST
C ADVANCE COLUMN COUNTER, CC

71 NCC a HCC # I
IFINCC - NI 16 6,16,72

72 IFNFI) 75,60
C GO TO 7S TO FEED SACK UNSUCCESSFUL LAST EXTRAPOLATION
C GO TO 80 TO IGNORE UNSUCCESSFUL LAST EXTRAPOLATION
C CALCULATE EXTRAPOLATED VECTOR XTLO AND PUT INTO XNEW

75 00 T7 Into"
N 2 XHLD(I
00 T6 JulNCM

76 N s W # DIFII,*J)*XKSI(JI
77 XNEWITI u W

C RESET COLUM(N COUNTER, NCC, FOR NEXT EXTRAPOLATION CYCLE
So MCC a e

C AOVANCE TEST COUNTER FOR NEXT EXTRAPOLATION CYCLE IStNP SO)
65 NEfE a NEX 0 NSK * N

III RETURN
END
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